Static Speaker

0

Alberto Rolandi & Mathieu Suter

Build an audio speaker without any moving part. Discuss the Maximum bandwidth, Signal-to-noise ratio and Power efficiency achieved with your design. Is it possible to modify your device to use it as a Microphone?

- Maximum bandwidth
- Signal-to-noise ratio
- Power efficiency
- Microphone

What is sound?

3

Pressure wave:

 $-rac{1}{c^2}rac{\partial^2 p}{\partial t^2}$ $\left(\right)$

Plasma speaker

What is a plasma?

- Ionized gas
- Neutrality

- Dominated by collective effects
- Very good conductor

Plasma speaker

Modulation of the volume of a plasma with temperature to produce a pressure wave

 $pV = Nk_BT$

Sound production

5

Q : mass transfer rate (volumic) H: energy transfer rate (volumic) \vec{F} : momentum transfer rate (volumic)

[1]

Possible setups

8

Joule heating speaker

Arc discharge

RF Discharge

9

Arc discharge

Frequency Response

50 × - Arc discharge × - RF discharge × - Bose SCL-II 40 30 SNR [dB] 20 10 0 -10 -10¹ 10^{2} 10^{3} 10^4 f [Hz]

Signal-to-noise ratio

ÉCOLE POLYTECHNIQUE Fédérale de Lausanne

Total harmonic distortion

16

Power efficiency

Microphone?

Microphone? 4

Microphone Sensitivity

Conclusion

- > Explained sound production using plasma
- > Built a working plasma speaker
 - Compared it with another model and a normal speaker
- > Studied the properties of the Speaker
 - > Frequency response, SNR, THD, Power efficiency.
- > Turned it into a microphone

Limitations

- > Safety issues
 - > Flame
 - > Ozone production
- > Unpractical solution
 - > High current (20A)
 - > Low power efficiency
- > Melting carbon rods shape

Further improvements

> 3-way speaker (tweeter, mid-range & woofer)
> Add substance to increase ions density
> Study optimal gap and position of the rods

Thank you for your attention!

Special thanks to Gérard Gremaud, Pedro Molina, Arthur Parmentier, Quentin Dubey, Daniele Mari, Nicolas Turin, Iva Tkalcec Vâju and Evgenii Glushkov

Sound pressure level

$$SPL_p = 20 \log \frac{p}{p_0} [dB]_{p_0 = 2 \cdot 10^{-5} Pa}$$

 $0 \ dB$ Hearing threshold $65-70~\mathrm{dB}$ Human voice 140 – 180 dB Fighter jet launch

Whisper $15-25~\mathrm{dB}$

 $\begin{array}{l} \text{Orchestral Climax} \\ 100-110 \ \text{dB} \end{array}$

Spectrogram

27

VPT

Microphone spectrogram

Sound production

A - amplitude of the sound wave
I - current across the electrodes
V - voltage between the electrodes
C - constant coefficient

 $A = C\left(\frac{d(IV)}{dt}\right)$

PT

Square/triangular wave harmonics

Equare:
$$x(t) = \frac{4}{\pi} \sum_{k=1}^{\infty} \frac{\sin(2\pi(2k-1)ft)}{2k-1}$$
$$x_{\text{triangle}}(t) = \frac{8}{\pi^2} \sum_{k=0}^{\infty} (-1)^k \frac{\sin((2k+1)\omega t)}{(2k+1)^2}$$

Hissing noise

Crater shape formation on carbon rods [2]
 Oxygen reaching the crater and combining with local carbon

> Results in drop of current leading to noise

References

Michael S. Mazzola, and G.Marshall Molen

F Bastien 1987 J. Phys. D: Appl. Phys. 20 1547

 [1] Ingard U 1966 Phys. Rev. 145 41-46
 [2] Ayrton, "The hissing of he electric arc", Journal of the Institution of Electrical Engineers (Volume: 28, Issue: 140, June 1899)

Saha law

y: ionisation rate

$$\frac{y^2}{1-y} = \frac{1}{n} \left(\frac{2\pi m_e k_B T}{h^2}\right)^{3/2} exp\left(-\frac{\chi}{k_B T}\right)$$

$$a = \frac{1}{n} \left(\frac{2\pi m_e k_B T}{h^2} \right)^{3/2} exp(-\frac{\chi}{k_B T}) > 0$$
$$y = \frac{-a + \sqrt{a^2 + 4a}}{2}$$

UV from arc discharge

35

